Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences.

نویسندگان

  • Haruki Ueda
  • Yoshinori Ikenaka
  • Shouta M M Nakayama
  • Tomoko Tanaka-Ueno
  • Mayumi Ishizuka
چکیده

The present study examines amphibian metabolic activity - particularly conjugation - by analysis of pyrene (a four ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry detector (MS) system and kinetic analysis of conjugation enzymes. Six amphibian species were exposed to pyrene (dissolved in water): African claw frog (Xenopus laevis); Tago's brown frog (Rana tagoi); Montane brown frog (Rana ornativentris); Wrinkled frog (Rana rugosa); Japanese newt (Cynops pyrrhogaster); and Clouded salamander (Hynobius nebulosus); plus one fish species, medaka (Oryzias latipes); and a fresh water snail (Clithon retropictus), and the resultant metabolites were collected. Identification of pyrene metabolites by HPLC and ion-trap MS system indicated that medaka mainly excreted pyrene-1-glucuronide (PYOG), while pyrene-1-sulfate (PYOS) was the main metabolite in all amphibian species. Pyrene metabolites in amphibians were different from those in invertebrate fresh water snails. Inter-species differences were also observed in pyrene metabolism among amphibians. Metabolite analysis showed that frogs relied more strongly on sulfate conjugation than did Japanese newts and clouded salamanders. Furthermore, urodelan amphibians, newts and salamanders, excreted glucose conjugates of pyrene that were not detected in the anuran amphibians. Kinetic analysis of conjugation by hepatic microsomes and cytosols indicated that differences in excreted metabolites reflected differences in enzymatic activities. Furthermore, pyrenediol (PYDOH) glucoside sulfate was detected in the Japanese newt sample. This novel metabolite has not been reported previously to this report, in which we have identified unique characteristics of amphibians in phase II pyrene metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form P...

متن کامل

On the Practical Aspects of Joint Passive Phase Conjugation and Equalization Underwater Communication Systems

Underwater acoustic communication systems suffer from the channel impairments which results in time spreading of the transmitted signal. In underwater environment, multiple replicas of the transmitted signal are received at the receiver through different paths, which causes significant Inter-Symbol Interference (ISI). Decision Feedback Equalizers (DFE) was utilized to overcome this type of inte...

متن کامل

Characterization of phase-II conjugation reaction of polycyclic aromatic hydrocarbons in fish species: unique pyrene metabolism and species specificity observed in fish species.

Metabolic activity, particularly conjugation, was examined in fish by analyzing pyrene (a four-ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry (MS) system, and kinetic analysis of conjugation enzymes. Fourteen fresh water fish species, including Danio rerio and Orizias latipes, were expos...

متن کامل

Dynamics of habitat changes as a result of climate change in Zagros Mountains Range (Iran), a case study on Amphibians

Climate change is currently considered a serious threat for many species and recognized as one of the most important factors in the global biodiversity loss. Among animal groups, amphibians are known to be among the most sensitive groups of vertebrates to climate change due to their inability to travel long distances, and mountain habitat species are more exposed to climate change pressures tha...

متن کامل

Comparative metabolism of geranyl nitrile and citronellyl nitrile in mouse, rat, and human hepatocytes.

Geranyl nitrile (GN) and citronellyl nitrile (CN) are fragrance components used in consumer and personal care products. Differences in the clastogenicity of these two terpenes are postulated to result from differential biotransformation, presumably involving the conjugated nitrile moiety. The metabolic clearance and biotransformation of GN and CN were compared in primary hepatocytes from mice, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aquatic toxicology

دوره 105 3-4  شماره 

صفحات  -

تاریخ انتشار 2011